How Autotune works
Autotune is Statsig’s Bayesian Multi-Armed Bandit, and Autotune AI is Statsig’s Contextual Bandit. Both Autotune products will test and measure different variations and their effect on a target metric.- The multi-armed bandit continuously adjusts traffic towards the best performing variations until it can confidently pick the best variation. The winning variation will then receive 100% of traffic.
- The contextual bandit personalizes what variant a user sees based on “context” - or provided user/interaction attributes - to serve each user the variation predicted to be best (i.e. personalization).
| A/B/n Test | Multi-Armed Bandit (Autotune) | Contextual Bandit (Autotune AI) | Ranking Engine | |
|---|---|---|---|---|
| Typical # Variants | 2-3 | 4-8 | 4-8 | Arbitrary # | 
| Personalization Factor | None | None | Moderate | High | 
| Input Data Required | None | Very Little (100+ samples) | Little - generally 1000+ samples | Tens of thousands to millions of samples | 
| Model Efficacy | None | Basic | Moderate | High | 
| Identifies Best Variant | Yes | Yes | No | No | 
| Consistent User Assignment | Yes | No | No | No |